1. 代表性论文
[1] Zhenwu Wang, et al. Interpreting convolutional neural network by joint evaluation of multiple feature maps and an improved NSGA-II algorithm. Expert Systems With Applications,2024,255:1-24. (中科院一区TOP期刊, IF=7.6, WOS: 001262094900001)
[2] Zhenwu Wang, et al. Solving dynamic multi-objective optimization problems via quantifying intensity of environment changes and ensemble learning-based prediction strategies. Applied Soft Computing,2024,154:1-29. (中科院一区TOP期刊, IF=8.7, WOS: 001178018400001)
[3] Zhenwu Wang, et al. PML-ED: A method of partial multi-label learning by using encoder-decoder framework and exploring label correlation. Information Sciences,2024, 661:1-23. (中科院一区TOP期刊, IF=8.1, WOS: 001174246200001)
[4] Zhenwu Wang, et al. A multi-objective chicken swarm optimization algorithm based on dual external archive with various elites. Applied Soft Computing,2023,133:1-24. (中科院一区TOP期刊, IF=8.7, WOS: 001026652800001)
[5] Zhenwu Wang, et al. A novel Bayesian network-based ensemble classifier chains for multi-label classification. Complex & Intelligent Systems,2024, 10(5):7373-7399. (中科院二区期刊, IF=5.2, WOS: 001271161300001)
[6] Zhenwu Wang, et al. An agent‑based persuasion model using emotion‑driven concession and multi‑objective optimization. Autonomous Agents and Multi-Agent Systems,2024,38(2):1-44. (CCF B类期刊, IF=2.0, WOS: 001268286100001)
[7] Zhenwu Wang, et al. A Three-Dimensional Visualization Framework for Underground Geohazard Recognition on Urban Road-Facing GPR Data. ISPRS International Journal of Geo-Information,2020, 9(11):1-20. (IF=2.9, WOS: 000593324900001)
[8] Zhenwu Wang, et al. Partial Classifier Chains with Feature Selection by Exploiting Label Correlation in Multi Label Classification. Entropy, 2020, 22(10):1-22. (IF=2.5, WOS: 000585255300001)
[9] Zhenwu Wang, et al. A Comparative Study of Common Nature‐Inspired Algorithms for Continuous Function Optimization. Entropy, 2021, 23(7):1-40. (IF=2.5, WOS: 000676563200001)
[10] Zhenwu Wang, et al. A novel multi-label classification algorithm based on K-nearest neighbor and random walk. International Journal of Distributed Sensor Networks,2020, 16(3):1-17. (IF=1.6, WOS: 000524570400001)
2. 代表性教材
[1] 王振武.大数据挖掘与应用(第二版).清华大学出版社, 2023.(ISBN:978-7-302-62832-3,教育部-阿里云产学合作专业综合改革规划教材)
[2] 王振武.计算机图形学原理与实现.清华大学出版社, 2024.(ISBN:978-7-302-65348-6, 全国高等学校计算机教育研究会“十四五”规划教材)
[3] 王振武.数据挖掘算法原理与实现(第3版 微课版).清华大学出版社, 2023.(ISBN:978-7-302-64069-1)
[4] 王振武. 软件工程理论与实践(第3版 微课版).清华大学出版社, 2023.(ISBN:978-7-302-66088-0)