1)著作
[1] 李策,彭苏萍,杨峰,乔旭,闫睿. 排水管道机器人智能视觉探测原理及应用, 哈尔滨工业大学出版社, 2024.
[2] Baochang Zhang, Ce Li, Nana Lin. Machine Learning and Visual perception, De Gruyter, 2020.
[3] 焦建彬,叶齐祥,韩振军,李策.视觉目标检测与跟踪,科学出版社, 2016.
2)论文
[1] Ce Li, et. al. (2021). Memory attention networks for skeleton-based action recognition. IEEE Transactions on Neural Networks and Learning Systems, 33(9), 4800-4814.
[2] Ce Li, et. al. (2019). Deep manifold structure transfer for action recognition. IEEE Transactions on Image Processing, 28(9), 4646-4658.
[3] Ce Li, et. al. (2018). Deep fisher discriminant learning for mobile hand gesture recognition. Pattern Recognition, 77:276-288.
[4] Ce Li, et. al. (2024). Multi-scale adaptive feature network drainage pipe image dehazing method based on multiple attention. Electronics, 13(7), 1406.
[5] Ce Li, et. al. (2024). Intelligent analysis system for teaching and learning cognitive engagement based on computer vision in an immersive virtual reality environment. Applied Sciences, 14(8), 3149.
[6] Ce Li, et. al. (2019). Pipeline Defect Detection Cloud System Using Role Encryption and Hybrid Information. Computers, Materials & Continua, 61(3).
[7] Ce Li, et. al. (2019). Tunnel crack detection using coarse‐to‐fine region localization and edge detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(5), e1308.
[8] Ce Li, et. al. (2019). Enhanced bird detection from low-resolution aerial image using deep neural networks. Neural Processing Letters, 49, 1021-1039.
[9] Ce Li, et. al. (2013). Visual abnormal behavior detection based on trajectory sparse reconstruction analysis. Neurocomputing, 119, 94-100.
[10] Ce Li, et. al. (2018). Robust kernelized correlation filter with scale adaption for real-time single object tracking. Journal of Real-Time Image Processing, 15(3): 583-596.
[11] Linlin Yang#, Ce Li#, et. al. (2017). Image reconstruction via manifold constrained convolutional sparse coding for image sets, IEEE Journal of Selected Topics in Signal Processing, 11(7):1072-1081.
[12] Chunyu Xie, Ce Li, et. al. (2019). Hierarchical residual stochastic networks for time series recognition. Information Sciences, 471, 52-63.
[13] Hongren Wang, Ce Li, et. al. (2019). Gaussian transfer convolutional neural networks. IEEE Transactions on Emerging Topics in Computational Intelligence, 3(5), 360-368.
[14] Longshuai Sheng, Ce Li*. (2023). Weakly supervised coarse-to-fine learning for human action segmentation in HCI videos, Multimedia Tools and Applications, 82(9):12977-12993.
[15] Shan Gao, Zhenjun Han, Ce Li, et. al. (2015). Real-time multi-pedestrian tracking in traffic scenes via an RGB-D-based layered graph model. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2814-2825.
[16] Fukai Zhang, Ce Li, et. al. (2019).Vehicle detection in urban traffic surveillance images based on convolutional neural networks with feature concatenation. Sensors, 19(3):594.
[17] Baochang Zhang, Alessandro Perina, Ce Li, et. al. (2018). Manifold constraint transfer for visual structure-driven optimization. Pattern Recognition, 77:87-98.
[18] Linlin Yang, Ce Li, et. al. (2018). Adaptive multiclass correlation filters and its applications in recognition. Journal of Electronic Imaging, 27(3):033010.
[19] Pinjie Xu, Ce Li*, et. al. (2019). Underground disease detection based on cloud computing and attention region neural network. Journal of Artificial Intelligence, 1(1):9-18.
[20] Qian Liu, Feng Yang, Ce Li. (2019). AWBING plus algorithm for generic object proposal generation. Journal of Intelligent & Fuzzy Systems, 36(6), 6685-6701.
[21] Jiaxin Gu#, Ce Li#, et. al. (2019, July). Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
[22] Chunyu#, Ce Li#, et. al. (2018, January). Memory attention networks for skeleton-based action recognition, In 2018 International Joint Conference on Artificial Intelligence (IJCAI).
[23] Xiaodi Wang, Baochang Zhang, Ce Li, et. al. (2018, June). Modulated convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[24] Ce Li, et. al. (2016, March). Cluster-based dictionary learning and locality-constrained sparse reconstruction for trajectory classification. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE.
[25] Ce Li, et. al. (2014, August). Locality-constrained Sparse Reconstruction for Trajectory Classification. In 2014 22nd International Conference on Pattern Recognition (ICPR), IEEE.
[26] Ce Li, et. al. (2017, November). Evaluation of super-resolution on bird detection performance based on deep convolutional networks. In 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP).
[27] Ce Li, et. al. (2025, July). 2s-TAS: Two-stream transformer for multi-modal human action segmentation. In 2025 IEEE International Conference on Multimedia and Expo (ICME).
[28] Ce Li, et. al. (2025, July).Improved pipeline disease grading detection method for visual inspection of sewer pipeline robots. In 2025 IEEE International Conference on Multimedia and Expo (ICME).
[29] Ce Li, et. al. (2011, August). Abnormal behavior detection via sparse reconstruction analysis of trajectory. In 2011 Sixth International Conference on Image and Graphics (ICIG).
[30] Ce Li, et. al. (2023, November). Improved sliding window smoothing for video temporal action segmentation and recognition. In 2023 China Automation Congress (CAC) (pp. 8653-8658). IEEE.
[31] Yujia Chen, Ce Li*. (2017, November). GM-Net: Learning features with more efficiency. In 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR).
[32] Tingran Wang, Ce Li*, et. al. (2022, December). High-Fidelity Pluralistic Image Completion with PLSA-VQGAN. In 2022 International Conference on High Performance Big Data and Intelligent Systems (HDIS).
[33] Qin Han, Ce Li*, et. al. (2023, November). Pipeline Inner Surface 3D Reconstruction and Depth Prediction Based on Fast-MVSNet for Intelligent Sewer Robot Vision. In 2023 China Automation Congress (CAC).
[34] Shan Gao, Zhenjun Han, Ce Li, et. al. (2013, December). Real-time multi-pedestrian tracking based on vision and depth information fusion. In Advances in Multimedia Information Processing–PCM 2013: 14th Pacific-Rim Conference on Multimedia (PCM).
[35] Xingchao Liu, Ce Li, et. al. (2019, January). Starts Better and Ends Better: A Target Adaptive Image Signature Tracker. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).
[36] Xiaodi Wang, Ce Li, et. al. (2019, January). Taylor Convolutional Networks for Image Classification. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).
[37] 杨超宇,李策,等. 基于视频的煤矿安全监控行为识别系统研究[J].煤炭工程,2016,48(04):111-113+117.
[38] 杨超宇,李策,等. 基于改进粒子滤波的煤矿视频监控模糊目标检测[J].吉林大学学报(工学版),2017,47(06):1976-1985.
[39] 李涛涛,李策*,等.基于嵌入式以太网的地质雷达通信系统的研究[J]. 煤炭技术,2017,36(03):242-245.
[40] 李策.炮弹发射弹道命中目标误差校正估计仿真[J].计算机仿真,2017,34(03):15-18.
[41] 王丽珍,胡天睿,李策*. 基于LCSCA特征与协同表示的轨迹分析算法[J].济南大学学报(自然科学版),2017,31(03):202-207.
[42] 李涛涛,杨峰,李策,等. 基于光条信度评价的线结构光传感器曝光时间优化[J].光学学报,2018,38(01):184-192.
[43] 苏剑臣,李策*,等. 基于边缘帧差和高斯混合模型的行人目标检测[J].计算机应用研究,2018,35(04):1246-1249.
[44] 李策,等. 基于RGM色彩空间的色盲矫正方法. 计算机应用研究,35(12),2018.
[45] 刘倩, 李策,等. 基于似物目标的快速行人检测算法[J].计算机应用研究,2019,36(07):2219-2222.
[46] 刘倩, 李策*,等. 加权极限学习机在行人检测中的研究和应用[J].计算机工程与设计,2019,40(08):2366-2371.
[47] 张富凯,杨峰,李策.基于改进YOLOv3的快速车辆检测方法[J].计算机工程与应用,2019,55(02):12-20.
[48] 盛龙帅, 李策*,等. 基于注意力机制的乳腺X线摄影分类方法[J].计算机工程与应用,2020,56(08):166-170.
[49] 徐频捷,王诲喆,李策*,等. 基于脉冲神经网络与移动GPU计算的图像分类算法研究与实现[J]. 计算机工程与科学,2020.
3)专利
[1] Ce Li, et. al. Method for rapidly dehazing underground pipeline image based on dark channel prior, United States, US11,145,035 B2, 2021.
[2] Ce Li, et. al. Weakly supervised learning based method for recognizing behavior through video segmentation, Nederland, N2029182, 2023.
[3] Ce Li, et. al. Method for restoring video data of drainage pipe based on computer vision, United States, US11,620,735 B2, 2023.
[4] 李策,等.一种基于图卷积神经网络的骨架数据行为识别方法,中国, ZL201910499246.0, 2020.
[5] 李策, 等. 基于暗通道与Retinex的地下管道图像去雾方法,中国, ZL 202110207398.6, 2022.
[6] 李策, 等. 一种破损圆柱形排水管道内壁三维重建方法,中国, ZL201810377499.6, 2019.
[7] 李策, 等. 一种基于改进的卷积匹配追踪管道视频图像去雾增强方法,中国, ZL201811026306.9, 2019.
[8] 李策, 等.一种基于计算机视觉与机器学习的管道缺陷识别方法,中国, ZL201910136101.4, 2019.
[9] 李策, 等.一种结合边缘帧差和高斯混合模型的运动目标检测方法,中国,ZL201710678856.8, 2018.
[10] 李策, 等. 基于深度卷积神经网络的雷达信号铁路路基病害检测方法,中国, ZL 201710928460.4, 2018.
[11] 李策, 等. 一种基于全局特征和稀疏表示分类的人体行为识别方法,中国,ZL 201711111597.7,2018.
[12] 李策,等. 一种排水管道单目视频三维重建和深度预测方法,中国,ZL 2024 1 0129446.8, 2025.